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ABSTRACT 
 
 
In the physical world, humans gather valuable information about objects through 

their sight.  Information on shape, feel and composition are seen long before the object is 

touched.  This information is generated by light reflecting off the surface of objects. 

Despite the advancement of computer graphics due to increased hardware rendering 

capacity, the fundamental equations, which draw three-dimensional scenes, lack the 

ability to truly model realistic objects.  Whether it is smooth like highly polished metal or 

rough like the shag of a carpet, it is the reflection of light that tells humans what a surface 

feels like.  The attempt taken in this thesis to implicitly model the roughness of textured 

surfaces through examination of an explicit model rendered with the OpenGL lighting 

equation.  This approach has the potential to successfully increase the realism of 

computer graphics without increasing polygon count required for explicit surface 

generation.  Through simulation of an explicitly constructed rough surface followed by 

the analysis of the behavior of its reflected light, the initial behaviors of textured surface 

reflections are identified.  While these behaviors are not enough to create corrections to 

the OpenGL lighting equation, they lay the foundation for further development. 
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I. INTRODUCTION 
 

Until a medium is created to display real three-dimensional images, three-

dimensional graphics must continue to be presented through a two-dimensional medium.  

The true nature of three-dimensional graphics can then only be portrayed through 

interaction.(Moller, p.122)  This same interaction is used to turn monocular cues into 

depth perception in the physical world.  More specific data about object themselves can 

be extracted than simply positional information.  This information can be gleamed from 

the manner in which light is reflected from an object as the viewpoint changes.  It is in 

the reflection from an object that we can see its texture. 

Carpets are an excellent example for illustrating the behaviors of illuminated 

textured surfaces.  Figure 1 shows how a silk carpet that has both a textured and shiny 

surface can reflect light in completely different ways from opposite viewpoints.  All 

carpets have a specific direction in which the threads lay.  The apparent brightness of the 

carpet significantly changes by either pointing the light source into or away from the 

thread lay.  However, if this same example was attempted in computer graphics program 

as a two-dimensional image, the image would appears exactly the same regardless of the 

position of the viewpoint. 
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Into the threads 

 

Perpendicular View 

 

Along the threads 

 
Figure 1: Example of Real World Textured Surface Reflection  

 

In the real world, the laws of physics determine how object reflect light.  In 

computer graphics, it is the rendering equations inside graphics libraries, like OpenGL 

and DirectX, which attempt to recreate these same reflections.  If graphics libraries 

ignore an important part of the laws of physics, than they can hardly hope to accurately 

recreate it.   

 

A. PROBLEM DEFINITION 

Current graphics libraries do not intrinsically model rough surfaces.  Much of the 

appearance of objects in the real world is a result of their textured surface reflecting light.  

In order for current graphics libraries to model realistic surfaces, they have to explicitly 

build the textured surface with a complex polyhedron.  An accurately represented rough 

surface would require millions of individual polygons.  This amount radically increases 

as the surface area or texture detail represented increases.  Despite break-neck speeds 

found in today’s computers, it is still not feasible to model rough surfaces explicitly.   
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An alternative to modeling rough surfaces explicitly is to develop a method for 

characterizing rough surfaces based on their interactions with light.  Surfaces composed 

of relatively few polygons, which reflect light as if they were rough, would then be able 

to render realistic images at a fast enough frame rate to support scene interaction which is 

essential for realism. 

This thesis will attempt to add intrinsic rough surface capability to OpenGL in the 

form of a correction component to its lighting model.  To accomplish this task, the 

reflective behaviors of various computer generated rough surfaces will be examined 

through the development of a rough surface simulation program.  The correction will 

attempt to quantify the difference in behavior between that of a smooth surface, which 

OpenGL already models quite well, and a textured surface. 

This thesis will explore rough surface reflection using the following method:   

1) Simulate a rough surface reflecting light via an explicitly computed generated 
textured model 

2) Reflected light is captured, measured and recorded 

3) Analyze the data for principle behaviors 

The result will be the definition of a term for a correction to the OpenGL 

rendering equation that will serve as a first-order approximation for rough surfaces. 

 

B. APPLICATIONS IN COMPUTER GRAPHICS 

Interactive 3D computer graphics suffer from a cartoon-like feel which is a direct 

result of graphics libraries’ failure to implicitly render textured surfaces.  All surfaces 

reflect light with the same reflective behavior regardless of the intended composition of 

the surface or object.   The realism of graphics largely depends on the lighting and how 

its behaviors matches those found in the real world.  Realism is either gained or lost when 

computer graphics incorporate motion or interaction.  It is easier to see the strengths or 

weaknesses of the lighting model when the viewer can look and move around.  The 

observation that a rough object is reflecting light incorrectly may not necessarily be a 

conscious one, but it will detract from the realism of the scene.       
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Plugging the capability to model rough surfaces into a graphics library results in 

scenes where shiny surfaces can easily be distinguished from rough ones.  This produces 

scenes that are more natural and realistic.  Adding this functionality increases the 

complexity of the lighting model, thus slowing it down.  The realism which is gained 

with the better lighting model may be lost if the frame rate slows down too much.  

Therefore, the computational nature of the correction must also be lightweight. 
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II. BACKGROUND 
 

The human eye’s perception of color, when looking at a surface in the physical 

world, depends on the distribution of photon energies that arrive and trigger the eye’s 

cone cells.  Those photons originate from one or many light sources, some photons are 

absorbed and some of which are reflected by the surface.  Additionally, different surfaces 

have very different reflective and absorption properties – which is to say that a shiny 

surface tends to reflect light in a specific direction, while a dull surface tends to scatter 

incoming light equally in all directions.  Most surfaces are somewhere in between. (Woo, 

p.177) 

Objects in the real world all reflect light differently.  Useful information about 

their size, shape and composition can be gathered from their appearances.  The 

appearance of an object is a function of the how the object’s surface reflects light from a 

particular light source.  More specifically, it is the texture of the reflecting surface that 

determines its appearance when illuminated.  This texture, which is really a rough 

surface, provides realism to objects.  It is this same texture that is missing from objects 

rendered by computer graphics, thus limiting the perceived realism of the scene 

presented. 

Without the ability to feel the texture on an object, our sight is the only means 

available to determine if an object is smooth or rough.  In this way, perhaps a concept 

developed to understand objects appearing beyond our reach, can be used to increase the 

realism of computer graphics.  Like space, computer graphics renders objects we can see, 

but not touch. 

The scientific community has studied a phenomenon known as the opposition 

effect, which it uses to describe the behavior of light reflected from astronomical bodies.  

The same ideas that are the basis for the opposition effect can also be applied to a more 

general case; rough surfaces.  Importing opposition effect behaviors into computer 

graphics is a reasonable method for simulating real three-dimensional textured surfaces. 
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Because this thesis will attempt to correct the OpenGL lighting equation by using 

an approximation of the opposition effect to model rough surface reflections, it is 

necessary to define the opposition effect and how it relates to the OpenGL lighting 

equation. 

 

A. DEFINING ROUGH SURFACE REFLECTIONS THROUGH THE 
OPPOSITION EFFECT 

The opposition effect describes why rough surfaces reflect light differently from 

smooth surfaces.  It is the general assumption that a smooth surface with no refractive 

index will have an exodus angle equal and in a direction opposite to the incident light.  

That is to say, that a smooth reflective surface, that has no translucent depth, will reflect 

light away from the source at an equal angle.  Rough surfaces, on the other hand, tend to 

reflect light back towards the light source.  The opposition effect describes the 

fundamental principles of complex surfaces reflecting light. 

The opposition effect derives its name from the fact that astronomical bodies 

appear at their brightest when the phase angle, which is the angular difference between 

the incidence and view angle, is zero for solar-system objects at astronomical opposition.  

Figure 2 illustrates the idea of phase-angle. 

 

 
 

Figure 2: Phase Angle Diagram 
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Planets, moons, etc, within the solar system are at astronomical opposition when the sun, 

the earth and the object are in that particular alignment.  This effect can be observed on 

earth from an airplane as a bright halo around the shadow of the plane when the shadow 

falls on vegetation or soil.  This halo typically disappears on worn pavement or other 

man-made surfaces for reasons that will be discussed later. 

 

1. History of the Opposition Effect 

Seeliger (1887, 1895) first discovered the opposition effect when examining the 

light scattered by Saturn’s rings.  He correctly explained the phenomenon by stating that,  

In a medium in which the particles are large when compared with 

the wavelength, particles near the surface cast shadows on the deeper 

grains.  These shadows are visible at large phase angles, but close to zero 

phase-angle they are hidden by the object that cast them.  Thus, the effect 

may only be thought of as being caused by shadow hiding.  (Hapke, p.217) 

The moon’s surface is considered a reflectively rough surface.  Apollo astronauts, while 

on the surface of the moon, captured an example of light reflected by the opposition 

effect and is shown in Figure 3.  A distinct halo can be seen around the shadow of the 

astronaut’s head in Figure 3.  This halo is the result of the sun’s rays reflected in a 

specific direction. 
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On the Moon’s Surface 

 

Overhead on a Space Walk 

 
Figure 3: Photos Of The Opposition Effect On The Moon 

 

It is important to note that the light source, in this case the sun, is behind the astronauts 

taking the photos and not in front.  The light from the sun is predominantly being 

reflected back and is brightest when the phase angle is near zero.  This is the opposite of 

what happens on a smooth surface.  The size of the halo is defined by the surface’s 

reflective angular half width, its angular half-width, which is unique property of every 

rough surface.  The angular half-width is a function the shininess of the rough surface; 

the more shiny it is, the smaller the half-width. 

An additional effect helps define the shape of the reflected light.  Areas in the 

photo that have bright spots intermixed with visible shadows appear less bright even 

though those bright spots are just as intense as inside the halo.  As the viewpoint rises 

above the incidence angle, the reflected light intensity dims.  This is the same as looking 

at the bottom of the first photo in Figure 3.  This dimming is a result of shadows, 

previously hidden in the rough cavities of the moon’s surface, now becoming visible.  

The elements of shadow-hiding are illustrated in Figure 4 and is one of the principle parts 

of the opposition effect. 
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Figure 4: Illustration of Shadow Hiding 

 

Computer graphics must incorporate these effects if they are to render rough or 

textured surfaces. 

 

2. Defining Reflectance Models 

It is more practical to talk about scenes in terms of reflectance models which are a 

light source and illuminated surface pair.  Reflectance models allow specific definition of 

the scene pair.  The reflective behavior of the scene does not remain constant.  

Identification of the specific reflectance model best illustrating the opposition effect will 

ensure proper development of a computer graphics simulation model. 

The concept of reflection can be divided into components based on a surface’s 

characteristic behavior to emit or scatter light.  Bruce Hapke coins the terms reflectance 

and reflectivity, both terms referring to the fraction of incident light scattered or reflected 

by a material.  Reflectivity refers to the specular type reflections produced by smooth 

surfaces.  Reflectance, on the other hand, refers to the more diffuse type reflections 

produced by geometrically complex surfaces.  (Hapke p.182)  While other types of 

reflection models exists, the reflectance model is best suited for modeling the opposition 

effect because it is created to describe the scattering of light by rough surfaces. 
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 There are many kinds of reflectance, depending on the geometry of the surface.  

It is important to qualify this defining term so that their meaning is unambiguous.  In 

current terminology, reflectance is preceded by a pair of adjectives describing the degree 

of collimation of the light source and then that of the detector.  Collimation describes 

how parallel or straight the rays of a particular light source are.  Typically directional, 

conical and hemispherical are used to describe the level of collimation.  If the case is 

such that the adjectives describing both source and detector are the same then the prefix 

bi- is substituted.  Hence, a directional-directional reflectance model is then called a bi-

directional reflectance model.  (Hapke, p.182) 

a) Directional Reflectance 

Directional reflectance is best portrayed by sunlight on a cloudless day; 

hence being unfiltered or un-reflected light.  The sun is considered a directional light 

source since its rays sub-tend less than 0.5o on earth’s surface.  In practice, this yields 

shadows the same size as the casting object when the sun’s rays are perpendicular to the 

earth’s surface, therefore no actual shadow would be visible around the object.  A camera 

whose lens is focused at infinity is an example of a directional detector.         

b) Hemispherical Reflectance 

Hemispherical reflectance is the opposite of directional reflectance.  Due 

to multiple scattering and reflections, the rays of light no longer hold any particular 

direction.  As the sun’s rays pass through a cloud layer, the rays are scattered and produce 

a glowing light source.  This is demonstrated by the seeming lack of shadows on a cloudy 

day. 

c) Conical Reflectance 

Conical Reflectance is the combination of both directional and 

hemispherical reflectance.  In reality, all measured reflectances are bi-conical due to the 

fact that no naturally occurring reflectance can be either perfectly collimated, nor diffuse.  

However, many situations in nature are sufficiently close to collimated or diffuse for 

those models to be used as useful approximations. 
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3. The Bi-Directional Reflectance Model 

A model that attempts to approximate the opposition effect must account for 

shadows.  This requires a directional light source.  Additionally, because the effect is 

better seen at longer distances, a directional detector is also required.  A model 

connecting the light incident from one direction with the light observed from another 

direction is called a bi-directional reflectance model.  Such a model is best suited to 

model the opposition effect. 

 

4. The Bi-Directional Reflectance Function 

The bi-directional reflectance function, or BDRF, is the implementation of the bi-

directional reflectance model.  The function will include the mathematical algorithm by 

which the lighting reflections are calculated.  The BDRF can be thought of as a black 

box, which takes a series of parameter (incidence, viewpoint, roughness, etc…) and 

yields a light intensity value. 

 

B. AN ALTERNATIVE METHOD FOR MODELING ROUGH SURFACES 
IN COMPUTER GRAPHICS 

Another approach, which is widely viewed as the most accurate to date, seeks to 

incorporate microscopic rough surface reflection effects through a statistical/micro-facet 

model.  While not explaining the specifics of the model, a model developed by Cook and 

Torrance, uses a linear combination of the ambient, diffuse and specular 

components.(Watt, P.58)  The specular component of their model is based on the Fresnel 

Equation for reflections off a perfect surface, and then modified by a geometry 

attenuation term and a statistical micro-facet term.  This model is similar to the Phong 

model in that it only models reflections from a directional light source.  Specifically, this 

model was developed to improve the specular reflection off a highly polished metal 

surface, which they assume is not a perfectly flat surface, but rather a nearly flat faceted 

surface.   Cook and Torrance’s model also takes on a more physically based approach by 

dealing with light as wave energy and not simply geometric lines.  In their model, it is 
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possible to increase the roughness of a shiny surface by increasing the geometry 

attenuation term, which controls the diffuse light emitted from the surface.  

Unfortunately, this model does not affect the angular direction of the specular reflection 

lobe, which this thesis believes is necessary to accurately model rough surface 

reflections.  This model is really better suited for modeling the subtleties of shiny 

surfaces than the reflective behaviors of textured surfaces.  Furthermore, this shows that 

in addition to OpenGL’s deficiency, Cook and Torrance’s methodology is also 

insufficient for correctly modeling rough surface reflective behavior. 

 

C. MODELING THE OPPOSITION EFFECT IN COMPUTER GRAPHICS 

Having described why the opposition effect is a good method for describing 

reflection behaviors of rough surfaces, and why a BDRF is the appropriate model 

structure, it is now important to describe why the OpenGL graphics library should be 

used to simulate the model. 

OpenGL is the most popular real time rendering model, and is also similar in form 

to the extensible VRML lighting model. The majority of computer graphics cards 

produced have hardware accelerators specifically designed to implement the equations 

defined by the OpenGL model. OpenGL captures all of the characteristic components of 

reflected light; emission, ambient illumination, and diffuse and specular reflectivity.  

Currently, OpenGL is capable of modeling light reflections from a facet or a flat surface 

comprised of a single polygon.  A textured surface is comprised of many such facets.  In 

order to produce the reflective behaviors of a textured surface, the surface must explicitly 

have these facets in order to allow OpenGL to make all lighting calculations.  OpenGL as 

of yet, does not contain the ability to create the lighting effects in one polygon as if that 

polygon was comprised of many polygons.  However, OpenGL’s wide use in computer 

graphics and its open source accessibility makes it a good choice for simulating the 

opposition effect with a polyhedron. 
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1. The OpenGL Lighting Model 

The OpenGL lighting model approximates light as if it can be broken into its 

primary component colors; red, green and blue.  The color of a light source is 

characterized by the amount of red, green, and blue light it emits.  The material of a 

surface is characterized by the percentages of the incoming red, green, and blue 

components that are reflected in various directions.  (Woo p.177)   

In the OpenGL model, light sources have effects only when there are surfaces 

configured to absorb or reflect that particular color of light.  Each surface is composed of 

a material with various properties.  Materials are able to emit their own light (such as 

headlights on an automobile), scatter incoming light in all directions (such as sidewalk 

made of concrete), or it might reflect some portion of the incoming light in a particular 

direction (such as a mirror or other shiny surface).  Materials may also take on a 

combination of attributes, allowing for a multitude of possibilities. 

The OpenGL lighting model considers light to be divided into four independent 

components: ambient, diffuse, specular, and emissive.  All four components are 

computed independently and then added together.  These four components can be 

correlated with the components mentioned in the reflectance sections.  Both directional 

and hemispherical light sources can be used either singularly or as a group.  Depending 

on how the light sources and reflecting materials are configured, different types of 

reflectance models can be simulated.  The bi-directional reflectance model can be 

simulated in OpenGL by using directional lights and surfaces with primarily diffuse and 

specular components. 

It is important to remember that the OpenGL lighting equations are just 

approximations and do not capture every behavior of light in the physical world.  

However, the model does work fairly well and, more importantly to computer graphics, it 

can be computed quickly and efficiently.  If a task required a more accurate lighting 

model, then the calculations would have to be pushed up to the software level.  Such 

software can be enormously complex, and dramatically slow down graphics rendering. 
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2. The Light Source / Reflecting Body Interaction 

OpenGL’s lighting model follows a two-part paradigm, the light source and the 

reflecting/absorbing-body pair.  In order for a light interaction to exist, the light source 

and reflecting body must be parameterized to allow for such an interaction.  If a red light 

source is paired with a body that reflects only blue or green, then the body will not be 

visible.  The same holds true for the specular and diffuse characteristics.  A reflecting 

body must be given ambient, diffuse or specular properties to be able to reflect light.  

Changing how an object’s material interacts with light alters an its appearance.  

Furthermore, an object’s material composition can be observed through its dynamic 

interaction with light.       

 

3. The Components of the Reflective Light According to OpenGL 

Reflected light is far more complex than its light source.  Because of the variety 

of surfaces that all reflect light differently, the model must be broken down into several 

sub-components. Since objects in computer graphics have no physical or tactile 

properties, the only means of which an observer can determine their composition is 

through their appearance.  Careful selection of an object’s reflective properties is the only 

way to relay this level of detail.  The reflective properties are broken down into three 

parts: ambient, specular, and diffuse.  The OpenGL model also includes emissive light; 

however because this is property of the light source and not of reflecting body, it will be 

not be addressed hereafter. 

The remaining three components that comprise the lighting equation all have a 

common axiom, in that each component has a light source and reflective surface pair.  

Without both parts of the pair, the component does not visually exist. 

a) Ambient Component 

Ambient illumination is light that has been scattered so much by the 

environment that its direction is impossible to determine – it seems to come from all 

directions.  Back lighting in a room has a large ambient component, since most of the 

light that reaches your eye has first bounced off many surfaces.  Rooms lit by ambient 
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illumination tend to have lamps that reflect light off several surfaces before being 

viewable.  This produces a uniform glow in the room.  In OpenGL, ambient light 

intensity is independent of incidence angle and viewpoint.  Therefore, it is not useful to 

include ambient light in the rough surface model. 

b) Diffuse Component 

The diffuse component is light that comes from one particular direction, 

however far enough away so that its light rays are parallel.  The result is light that is 

brighter if it strikes squarely down on a surface than if it strikes a surface at a glancing 

angle.  Once directional light strikes a surface, it is scattered equally in all directions.  

The level of brightness remains constant regardless of the view angle, so as long as the 

surface is viewable.  Any light coming from a particular position or direction most likely 

has a diffuse component. 

c) Specular Component 

Like directional light, specular light also comes from a particular 

direction, but tends to reflect off the surface in a preferred direction.  If a laser beam, 

which is composed of highly collimated light, is reflected off a high-quality mirror, it 

produces an almost perfect specular reflection.  Shiny metals or plastics have a high 

specular component, where as chalk or carpet have almost none.  The level of shininess 

that the material exhibits drives the width of the specular reflection. 

 

D. APPLYING THE OPENGL LIGHTING EQUATION 

Now that the OpenGL lighting equation has been identified as the proper tool for 

simulating the opposition effect, it is important to take a closer look at the workings of 

the equation and why it is applicable to simulate a real world effect.  As mentioned 

before, light in OpenGL is broken into three components: red, green and blue.  In 

OpenGL, each pixel carries an intensity value, ranging from 0 to 255, in each of the three 

colors. An extension of the Phone Lighting model, shown in Figure 5, is used to calculate 

each color component.  Mathematically, it is given by the following equation: 
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Figure 5: Phong Lighting Equation (Bui-Tong) 

 

In this equation, T(u,v) deals with texture coordinates and is not particularly 

influential as a reflecting property. Ja,  Jd, and Js are the normalized ambient, diffuse and 

specular light intensities, and have values ranging from 0 to 1. µa, µe, µd, and  µs are the 

ambient, emissive, diffuse, and specular color intensities of a given object and range from 

0 to 255.  These intensities can be thought of as potential reflectiveness for each property.  

ζ is the shininess parameter and ranges from 0 to 128, which determines the angular half-

width of the specular reflection lobe.  Finally, the light vectors, l, n, and s, are defined 

respectively as the incidence, surface normal and the reflection vectors.  Figure 6 

illustrates the interactions of the lighting model on a simple surface. 
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Figure 6: Geometric definitions associated with the OpenGL lighting model 

 

N R,G,B = T(u,v) * {µa J a  + µe + µdJd max(l⋅n,0) +µsJs [max(s⋅n,0)]ζ} 
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1. OpenGL Lighting Equation Limitations 

This lighting equation qualitatively captures the geometric behavior of emission 

and reflection from a surface.  There is no direct mapping between units in the physical 

world and the OpenGL lighting equation, but this does not preclude the light equation 

from being a valuable tool with which to simulate behaviors found in the real world.  The 

deficiencies of the equation must be kept in mind to prevent incorrect assumptions from 

being made.  These deficiencies include: 

• Non-linear color intensity summation 

• Non-physically based parameters 

• No opposition or self shadow effect 

• Statistical two-dimensional texture function 

Despite these limitations, the OpenGL lighting equation is a good starting point 

for a semi-empirical surface-rendering model, because it approximates the reflection 

from a single flat homogeneous surface facet with reasonable accuracy.   

 

2. The Principle Basis of the OpenGL Equation 

Even though there are several areas where the OpenGL equation attempts to 

model different light interactions in the physical world, this thesis will focus on the 

intensity of a single pixel which has been illuminated by an incident light.  Therefore, 

several components of the lighting equation will be held constant so as to not affect the 

reflection model.  This eliminates the emissive term, and turns the texture parameter into 

a constant.  

The term pixel is used to represent both the detector element, which makes a 

measurement of the reflected light, and the emissive element, which generates the visual 

energy seen on a computer monitor.  For both an ideal measurement and for the display 

system, the pixel is simply two sides of the same area.  The same light pattern that is 

measured should be viewed by an observer with no difference.  This is to say that the 

virtual reality scene should visually be no different from the actual scene. 
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The mathematical definition of the BDRF function is:   

 

NR,G,B  =  BDRF * IR,G,B 

Where: 

• IR,G,B - Input Light Intensity 

• BDRF – Bi-directional Reflectance Function 

 

A single BDRF, which parallels the OpenGL lighting equation, is expressed in 

terms of physical parameters is given by: 

BDRF =  ρl/π   + {ρs(1 + ζ) [max(s⋅n,0)]ζ / [4πcos(i)]}    

Where: 

• ρl  - Lambertian reflectivity 

• ρs  - Specular reflectivity. 

(Watt, p.24) 

This particular form is the basis by which surfaces are characterized in the 

OpenGL lighting model.  It is a function of three parameters: Lambertian reflectivity, 

specular reflectivity, and shininess.  These three parameters relate directly the bi-

directional reflectance model of the facets we hope to use as individual elements in our 

simulation of the opposition effect. 

This equation can be physically interpreted by going back to the two fundamental 

mechanisms by which light interacts with a surface.  The Lambertian term corresponds to 

light that is absorbed and uniformly re-emitted.  There is no viewpoint angular 

dependency in the Lambertian term since the re-emission is isotropic; meaning light is 

reflected equally in all directions. (Webster)  The Lambertian portion of the BDRF is 

identical to OpenGL’s diffuse light component.   

The specular term represents light reflecting from a surface as a whole in the form 

of a wave.  Specular reflection is a function of reflection geometry and the index of 

refraction, which is known as the Fresnel coefficient (ρs). (Wesley, p.24)  For most solid 
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surfaces, this coefficient is treated as constant. However, for more accurate models or 

models that attempt to handle liquid surfaces, this coefficient itself would be a function. 

 

3. Visual Effects of the OpenGL Lighting Components 

The Lambertian and specular components result in two different lighting effects, 

but both are important parts in modeling rough surface reflectance.  The light intensity of 

the Lambertian component is independent of view angle.  Therefore, the Lambertian 

component provides a surface with an unchanging light intensity as long as the light 

source does not change position.  This unchanging light source can be interpreted as a 

glow that is cast by the surface.   

The specular component is the light of the source seen “through” the surface.  For 

a perfectly flat shinny surface (i.e. a mirror which has a very large shininess value) the 

image appears to be inside the surface.  Instead of the uniform distribution given by the 

Lambertian component, the specular component defines a narrow lobe.  As the surface 

becomes rougher and the shininess value decreases, the reflecting lobe becomes wider.  

Despite the change in width of the reflecting lobe, the reflected color intensity remains 

the same value as the source.  It is important to note that the reflection of the specular 

component is driven by the reflection geometry, which so far only considers smooth 

surfaces.  

  

4. The OpenGL Bi-Directional Reflectance Function   

The OpenGL BDRF works best when scaling permits many pixel elements to 

represent a single polygon and that polygon represents only one flat homogeneous 

surface.  Computer graphic artists create impressive images by remaining within these 

constraints.  Polygon size can be decreased, thus increasing the number which represents 

a given area, in order to accommodate more complex materials and/or geometric 

surfaces.  Unfortunately, as the polygon count increases, the pixel-to-polygon ratio will 

eventually decrease to the point where one pixel represents more than one polygon.  The 

This is best illustrated when computer objects are viewed up close and then moved into 



 20

the distance.  The same object can now be represented with fewer pixels.  An algorithm 

of one type or another must be incorporated to properly represent multiple polygons with 

one pixels in order maintain the object’s correct appearance when viewed at long 

distances.  Hence, the experienced computer graphic artist can create models that 

minimize negative affects that appear as a result of combining polygons.  Adding the 

implicit correction for rough surfaces would reduce the number of polygons needed, thus 

reducing these undesirable effects.  

 

E. SUMMARY 

In order to enhance the realism of computer graphics, we must extend the 

OpenGL BDRF model to accommodate more complex reflection effects while not 

drastically slowing down its rendering process.  This extension can be accomplished 

through a correction to the lighting model which models behavior similar to that 

exhibited by the opposition effect.  Handling this extension implicitly will maintain the 

high frame rate required for realistic interaction.  Adapting OpenGL for this interaction 

will result in the addition semi-empirical corrections to its BDRF in order to improve its 

accuracy.  
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III. EXPLICIT ROUGH SURFACE MODELING AND 
SIMULATION 

 

Computer graphics can be used to model the behavior of light reflecting off 

surfaces by modeling the texture of real surfaces with many small facets.  The validity of 

the output depends on the number of polygon’s representing the surface and the accuracy 

of which each facet is rendered.  OpenGL, which has a credible model for representing 

simple light interactions, can be used to calculate light reflected from a single facet.  The 

appearance of the textured surface will be the sum total of calculations of each and every 

facet’s reflection.  However, OpenGL is only a part of the process; an entire simulation 

program must be written to build, manipulate and measure such a surface. 

In order to simulate and analyze rough surfaces in computer graphics, design and 

development of software tools is necessary.  This chapter will discuss the considerations 

that have gone into the design of the rough surface simulator, including the choice of 

programming language, the architecture of the tool’s algorithm, and finally the rough 

surface itself. 

 

A. DESIGNING THE ROUGH SURFACE SIMULATOR 

Various computer programs and tools are currently available that support the idea 

of modeling rough surfaces in a computer environment.  Many computer languages have 

imbedded libraries that support three-dimensional graphic development.  Despite the 

attractiveness of higher-level tools that produce extremely realistic images, their 

rendering engines are not open source, thus preventing the level of inspection and 

interaction that this thesis requires.  Open source algorithms are particularly important 

when trying to understand and validate the output of the model. 
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1. Base Line Assumptions  

Before the design and development of any tool, it is imperative to establish the 

expectations of the program.  The simulator is built with the following assumptions in 

mind: 

a) Incorporate a Bi-Directional Reflectance Function Model 

The opposition effect requires that a BDRF model be implemented in the 

simulator.  This requires that the characteristics of the light source be the same as those of 

light infinitely far away; that is, they must be collimated light.  Additionally, the detector, 

in the case of the simulator the viewpoint, must have a focal view of infinity to prevent 

any warping or bending of light rays as they are collected.  These requirements can be 

met will existing components of OpenGL lighting model. 

b) Provide Variability to the Rough Surface 

Capturing the behavior of a rough surface goes beyond simply varying the 

incidence and viewpoint angles.  True understanding of the behaviors requires examining 

different types of rough surfaces.  The simulator should allow basic manipulation of the 

surface, enabling some surface variability. 

c)  Provide an Experimental and Control Model 

All properly formed scientific experiments require that a control be 

established alongside the experiment.  Even though this experiment is entirely inside a 

computer, a scientific approach is still applicable.  In this case, the control will be a single 

polygon the size of the rough surface.  All facets in the rough surface will inherently have 

the same diffuse and specular reflective properties as the control surface.  Therefore, if 

the parameters of the rough surface are set such that the surface becomes smooth, then 

the output of the simulation should match the output of the control surface.  This will also 

enable comparison of the rough surface model to OpenGL’s current capability, which 

will be implemented in a control surface. 
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2. Using Java & Java3D (OpenGL Variant) 

The purpose of the simulator is to create rough surface reflection behavior 

through modeling the opposition effect with many facets each of which is rendered with 

the OpenGL graphics library.  While it is possible that another graphics library will yield 

results similar to those from OpenGL, it would be inappropriate to modify the OpenGL 

lighting equation based on those results.  Therefore, this narrows the selection of a 

programming language to one that supports the OpenGL library.  

Several languages support the OpenGL graphics library for 3D programming.  

Two of the more commonly used languages are C and Java3D.  Each language has strong 

and weak points.  The C language has been around much longer than Java 3D and has 

been used in industry on many projects.  It allows for in-depth control of the lighting 

model as well as providing faster results.  Java 3D is Sun Microsystems’ variant of the 

network-based Java language.  It is a stronger typed and structured language than C, 

making for stream-lined programming.  Unfortunately, Java3D does not benefit from the 

level of certification resulting from repeated use in industry that C offers.   

Taking that all points into consideration, the Java 3D language was selected 

to develop the simulation tool for three reasons:   

• The OpenGL Architecture Review Board (ARB) has award to Java3D the 
rights to bear its trademark, signifying the validation of the library 
implementation. 

• Java by nature is a platform independent language; therefore, the 
expectation is that differing hardware will have no impact on program 
output. This was tested and proven correct on computers using different 
graphics cards. 

• By nature Java is an easier language to decipher, thus allowing other 
researchers continuing the development the simulator, thus extending its 
software lifecycle.  

 

3. Program Design 

The purpose of the simulation program is to measure the light intensity reflected 

from a rough surface at various incidence and view angles.  The reflecting surface is a 
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rough surface explicitly constructed by macroscopic polyhedral structure.  The light 

source and capture instrument are collimated as specified by the BDRF model. 

The simulation program will generate two surfaces of the same material 

composition, light source and capture device.  The reflective distributions of both 

surfaces measured from all possible viewpoint elevation and azimuth angles.  This will be 

accomplished by orbiting the capture device over the surface along a specific azimuth.  

When that orbit is completed, the capture device will be rotated a predefined azimuth 

increment, and then orbited again.  This will repeated, until the entire surface has been 

measured.  Figure 7 illustrates this algorithm for measuring the reflective distribution of a 

surface.  

  

 
Figure 7: Illustration of Rough Surface Simulation Program 
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To accomplish the purpose of the simulator program, the program will require 

direct interaction with the graphics card’s buffers.  It will be useful for multiple surfaces 

of different characteristics to be rendered and measured at the same time, thus requiring 

the program to manipulate and control multiple threads.  Graphics User Interface (GUI) 

front ends are required, since the simulator should also offer some level of interaction for 

user-defined surface inspection. 

To accomplish an automated process of measuring a given rough surface with a 

specific incidence angle over all view angles, the following algorithm has been 

developed:    

 

• Both Experiment & Control scene graphs render a new frame. 

• Execution threads for scene graphs are paused and wait for image 
capture routines to complete execution. 

• Image capture routine pulls information from buffers and notifies 
scene graphs to resume. 

• Rendered light intensity values for frame are calculated and written to 
database. 

• Thread control increments elevation/azimuth rotation.  

• Start process over again. 

 

Figure 8 is a graphically flow diagram of this process, and highlights interaction 

management that must occur for proper automation to occur.    
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Figure 8: Flow Diagram for Rough Surface Simulator 

 

4. Developing the Rough Surface 

The key to simulating a rough surface is to accurately build the undulations of a 

surface from many small polygons.  Each geometric detail contributing to the overall 

surface roughness is modeled by many small polygons.  In order for the simulator to 

measure how different types of rough surfaces reflect light, the polyhedrons must be 

constructed for easy manipulation.   
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a) Basic Geometric Building Block 

The simulator provides a means to examine the reflection behaviors of 

rough surfaces.  This thesis attempts to capture these behaviors, and modify OpenGL’s 

lighting components such that the behaviors can be distilled into a texture form.  A key 

element in the texture concept is that the rough surface behavior must be uniform and 

constructed from a single material if it is to replace many polygons with only one.  This 

uniformity requires a surface constructed from simple objects, which combine to produce 

a rough surface.  Defining this requirement further, the uniqueness is achieved through 

repetitive use of one geometric object. 

The simplest object is a pyramid.  First, it has no curves.  Its four-sided 

base lends to easy grouping and organization.  The slope of the reflecting faces is 

determined by the height of the pyramid, making it relatively easy to adjust the roughness 

of the overall surface.  A shadow cast by a pyramid is the simplest geometric shape: a 

triangle.   

The height of the pyramid can also be truncated to simulate surfaces which 

exhibit the behavior of a rough surface, but also incorporates the behavior of a worn 

surface.  This additional behavior is found in most real-world textured surfaces and key 

to developing an accurate model.     

b) Inner Shadowing 

The crux of the opposition effect rests on the fact that shadows are 

normally seen at large phase angles and are obscured at phase angles near zero.  The 

opposition effect requires inner shadows in order to be modeled correctly.     

Java3D does not provide inherent shadowing capability; therefore the 

simulator, that is the programmer, must explicitly cast shadows from one geometric 

object to the next.  This is a relatively easy task when the surface is built of regular 

objects at regular intervals.  In this case the shadows can be drawn on each pyramid 

independent of its placement on the surface.  Figure 9, shows the simulator’s shadowing 

capability at various incidence angles as well as handling shadows for truncated 

pyramids.  Each picture is from a viewpoint directly in front of the pyramid and with no 
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elevation.  Although not visible, the shadow casted on these pyramids is from an identical 

pyramid directly in front the ones visible. 

 

 

 

 

 

 

 

 

Figure 9: Images of Shadows at different Incidence Angles in the Simulation Tool 

 

Unfortunately, calculating shadows beyond these cases becomes extremely difficult. 

c) Gouraud Shading 

OpenGL uses the Gouraud shading model to calculate the amount of light 

that a surface will reflect.  As mentioned in Chapter II, the amount of light reflected from 

a diffuse surface is driven only by the incidence angle and independent of the viewpoint.  

The Gouraud shading model is rather simple and shown in the following equation: 

Ireflected = µsource * cos (incidence angle) 

For example, if the incidence angle is 30o and the intensity of the light source is 128, the 

resulting diffuse reflection will be 64.   

d) The Light Source 

As stated in the design goals for the simulator program, the BDRF model 

requires a non-subtending light source to properly portray the specular reflection.  

Java3D, or rather OpenGL, provides a Directional Light class, which meets this 

requirement and as a single light source provides illumination for both diffuse and 

specular reflections.  Conversely, the material properties of the polygons constructing the 
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rough surface must also be properly set to interact with this light source correctly.    

Additionally, the direction of the directional light is variable allowing all incidence 

angles to be simulated. 

 

5. Measuring Light Reflected by a Surface 

The simulator relies on the OpenGL functions to render all images.  The graphics 

program, and in this case the graphics card, renders the image and writes the resulting 

data to a buffer.  The data stored in the buffer is considered the final product.  It is from 

the color values stored in this buffer that the video signals are generated.  By inheriting 

from Java3D’s Canvas3D class, the simulator can gain access the specific portion of the 

buffer that holds the data for each surface. 

The buffer itself is set up so that each pixel on the screen is represented as color 

triplet ranging from 0 to 255.  This is the same color triplet that OpenGL uses as 

mentioned in Chapter II.  Because all of the polygons in both surfaces in the simulation 

tool are either white, black or a shade of gray, the individual values in the color triplet are 

always the same.   

The important question which now arises is which pixel in the buffer to select as 

the representative of the light reflected from a surface.  It is also important to keep in 

mind that the capture window captures the intensity values of pixels on the monitor and 

not the polygons that make up the surfaces.  If the surface viewed from the edge, it may 

not be visible on the screen.  However, as the viewpoint rotates to a perpendicular 

position, then the surface becomes visible in the view plane; hence the portion of the 

buffer that holds the surface’s data increases.  Figure 10 shows this effect. 
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Surface viewed 0o elevation 

 

Surface viewed at 10o elevation 

 
Figure 10:  Surface Views at Near Zero Angles 

 

It is therefore not possible to take all pixels in the buffer as representing light 

emanating from the surface.  A small capture window, which selects only those pixels 

projecting from the simulated surface, is required.  When developing the process to select 

the dimensions of this capture window, two possibilities are considered.  The first is a 

capture window of fixed height and width located in the center of the surface’s window; 

the second is a window that increases and decreases in height as the elevation is 

incremented. This method attempts to minimize the error induced by measuring pixels 

representing the horizon and maximizing the amount of the surface measured.  The first 

image in Figure 11 shows the pixels measured in the fixed capture window.  This box 

does not change as the elevation is increased.  The second and third images show the 

variable height capture window and how it attempts to follow the surface’s edges as the 

viewpoint rotates.  

 

 

Fixed Capture Window 

 

Variable Capture Window at 
0o elevation 

 

Variable Capture 
Window at 15o elevation 

 
Figure 11:  Views depicting Fixed and Variable Capture Windows 
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While the variable height capture window produced smoother graphs, its effects 

on the measurements caused by a wider range of view angles are not entirely obvious.  

The simulator defines the view angle to be a single angle between the view vector and the 

surface.  That angle is only true for the pixel at the center of the surface.  If the capture 

window is wide enough, then a variety of view angles are captured which could lead to 

the data being shifted in one direction or another.  The degree of this shift is not known.  

Figure 12 illustrates the how multiple view angles are actually seen when viewing a 

surface.  It is expected that the inclusion of so many actual view angles, actually washes 

out what truly is happening at the center of the surface where the primary interest lies.  

Avoidance of too many view angles is also the same reason that the fixed both types of 

capture windows’ widths are relatively narrow.  

  

 

 
Figure 12:  Shows Differing View Angles 

 

In order to minimize the angular width, the fixed height capture window was used in 

favor of the variable height capture window.  The final fixed capture window captures the 

center 40 x 40 pixels.  Each surface renders into a screen window of 300 x 400 pixels. 

 The final light intensity for each pixel is the averaged of all pixels in the capture 

window.  The simulator stores this average value in the database as the reflected light 

intensity for that particular elevation and azimuth angle.   
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6. Incorporating Low Grazing Angle Reflections 

Many rough surfaces appear very shiny at grazing angles.  Grazing angle 

reflections occur when the peaks on a rough surface are slightly rounded.  This rounding 

will cause light at low incidence to be reflected forward. This effect is only visible at 

similarly low view angles that look into the direction of the light source.  Only the 

rounded tops of a rough surface are visible at such angles, resulting in a rough surface, 

which has a behavior similar to a polished one.  The simulator attempts to capture the 

behavior of grazing angle reflections, which manifest differently, but occur on all rough 

surfaces.  To simulate this behavior, the simulator truncates pyramids, giving them a flat 

horizontal surface.  Figure 13 shows a rough surface with truncated tops and how light is 

reflected at low incidence levels.  

    

 

Light reflected backwards from the front 
facet of the pyramid 

 

Light reflected forwards off the top facet 
from the pyramids 

 
Figure 13:  Example Of Near Angle Reflection 

 

The level of truncation is variable which results in a varying amount of light 

reflected forward.  As the truncation increases, the rough surface gradually becomes a flat 

surface in both appearance and behavior.  As the truncation decreases, the rough surface 

reflects less and less light forward.  This behavior is not observed if roughness is 

controlled by pyramid aspect instead of truncation. 
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IV. SIMULATION LIMITATIONS 
 

It is vital to keep in mind that the quality of the output relates directly to the 

accuracy of the model.  Despite adequate software design and testing, it has become 

apparent that the existing simulator has in it severe limitations, which make using it to 

model rough surfaces problematic at best.  These limitations did not become apparent 

until examining the simulator’s output data.  If sufficient time allowed for each limitation 

to be address and handled, then the simulation tool’s credibility would be much 

improved.  

 

A. ALIASING AND PIXELATION 

Computer graphics, like all parts of computers, works on a discrete set of 

numbers.  No matter how large the buffers, or how big a value can be handled, there will 

come a point when precision is lost because the very last digit can only be a 1 or a 0.  

This same limitation can be found in images rendered by computers.  Two problems have 

arisen which are attributed directly to this discreteness.  While these problems are not 

directly responsible for the simulation tool’s inability to satisfactorily model rough 

surfaces, they did contribute to a noticeable difference between real world observations 

and the computer simulation. 

 

1. Pixelation 

When viewing the ocean at a relative low altitude it is easy to make out whitecaps 

of individual waves and the deep blue of the sea.  As you increase your altitude, the 

whitecaps begin to blur into the blue of the sea, but not completely disappearing.  Finally, 

you will reach an altitude when sea blurs into a singular color.  However, the color of the 

sea at high altitude is different on a windy day than a calm one.  The white of the 

breaking waves and the blue of the seas combine into grayish blue.  In effect, as the 

viewing distance increases between a set of objects and the viewpoint, a blurring or rather 

combining of color levels takes place.  Unfortunately, this is not the case in computer 
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graphics unless very specific code is designed to pixel blend.  OpenGL does not 

automatically handle this situation.  Figure 14 attempts to illustrate the effect caused by 

pixelation. 

 

 
Figure 14: Effects of Pixelation on Image Detail 

 

The simulator suffered from pixelation when the pyramid size was reduced 

enough that multiple pyramid facets could be represented in a single pixel.  Instead of 

OpenGL averaging the color value of all of the polygons to be rendered in that pixel, it 

takes the value of the closest one as part of its culling algorithm.  When this happens over 

a large portions of the image, a mesh of various colors instead of nice uniform shade, 

begins to appear.  The result is an image that appears significantly different from one that 

would result in the physical world. 

Another example of pixelation in the simulator is the incorrect manner in which 

the tops of pyramids are draw in Figure 15.  In this figure, red circles high-light areas that 

are affected by pixelation: it looks as if the tops of some of the pyramids are connected.  
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This is an artificiality created by rounding and floating-point error in computations 

carried out by OpenGL during the rendering process.  The pyramids in the bottom of the 

image, which are also the closet, are affected less than those further away.  It is only 

when the viewable portions of partially hidden polygons are smaller than the pixel size 

that incorrect pixel coloring can be seen.  

 

 

 

 

 

 

Figure 15:  Example of Pixelation in Rough Surface Rendering 

 

Over a group of images, this error becomes even more noticeable as flashing lines 

appear resulting from pixels being colored different from image to image.  Pixelation of 

this type translates directly into the data as jagged peaks over a range of values.  These 

jagged peaks introduced error, which hampers regression efforts. 

 

2. Aliasing 

Aliasing is a problem similar to pixelation, but it has different effects on the 

rendered image.  Aliasing results when a line, which is not vertical or horizontal, is draw 

on a computer screen; the line appears jagged.  This is a result of discrete pixels 

attempting to represent a non-discrete object.  OpenGL supports various methods for 

eliminating aliasing effects.  Such methods include using Fog algorithms or shading 

techniques.  (Woo, p.233)  Unfortunately, these techniques only apply to lines and not 

polygons; therefore they are unable to smooth the edges of the simulator’s pyramids.  The 

result is various geometric patterns emerging on the rough surface, which would not 

appear in the physical world. 
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The following image in Figure 16 is an example of aliasing.  Like pixelation, 

aliasing is more prevalent for objects further away from the viewpoint than closer.  

Patterns resulting from aliasing appear in the section above the red line, while little or no 

patterns are seen in the lower half. 

 

 

 

 

 

 

 

 

 

  
   

Figure 16:  Example of Aliasing Effects in the Simulation Tool 

 

While it is possible to see such patterns emerging from macroscopic rough 

surfaces, the intended correction to the OpenGL lighting equation is for uniformly 

distributed microscopic roughness.  It is not entirely understood how significant aliasing 

and pixelation affect the simulations tool’s measurements, but an image rendered with 

aliasing effects does fail to pass a visual test. 

 

B. PROBLEMS RESULTING FROM MAXIMUM LIGHTING CONDITIONS 
IN OPENGL 

Unlike the scientific community’s practice of describing light in units of measure, 

ranging from 0 to infinity typically in watts/cm2, OpenGL chooses to describe light in a 

unit-less fashion as well as limiting intensity levels to a maximum of 255.  The first 
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difficulty, which already has been mentioned in Chapter II, is that no direct mapping is 

possible from the physical world to the OpenGL lighting model.  The second, and more 

important in terms of the simulation tool, is that it is possible to generate values greater 

than 255 in the specular portion of the OpenGL light equation.  This breach of the 255 

maximum is not possible for ambient and diffuse since the ambient value is a fractional 

function and the diffuse value is a cosine function of the source, and never exceeds a 

multiple of 1.0.  However, the specular term’s exponential nature does allow intensity 

values to exceed the maximum level even when the light source intensity is as low as 

127.  The result is a rather severe truncation of specular reflections when the light 

source’s intensity approaches 255.  Figure 17 is the result of measuring the intensities of 

both specular and diffuse reflection from two identically flat surfaces, one being 

illuminated by a light source of 127, the other by a light source of 255.  The truncation 

can been seen when the reflecting light level increases beyond OpenGL’s maximum 

value.   

 

 
Figure 17:  Example of Truncation of Specular Lobe at Maximum Source Intensity 
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This truncation significantly affects the behavior of specular reflections if a maximum 

light source setting is used.  To avoid truncation error it is necessary to run simulations at 

low light levels.  Since the reflected intensity of specular reflections is linear with respect 

to light source intensity level, varying light levels to avoid truncation will not adversely 

affect the results of the simulator. 

 

C. PYRAMIDS POORLY REPRESENT ROUGH SURFACES 

When designing the simulator, several geometric shapes were considered for use.  

In the end, a truncatable pyramid was selected based on the ease of which shadows could 

be calculated and the aspects of the pyramid adjusted.  Unfortunately, using pyramids to 

model rough surfaces introduced several artificialities, which significantly affected the 

analysis of the simulation tool’s output data.  These artificialities are: 

 

1. Non-Random Reflecting Normals 

It is the general assumption that rough surfaces have an inherent uniform random 

distribution of surface normals.(Baer, 2001)  This holds true for surfaces with a uniform 

roughness, since the actual rough texture is microscopic.  OpenGL relies heavily on 

surface normals because it calculates specular and diffuse reflections with them.   The 

pyramids used in the simulation tool’s rough surface, were not constructed with any 

randomness in order to maintain reasonable shadow calculations.  Unfortunately, this 

results in a rough surface with a single surface normal, and reflection behavior 

inconsistent with a physically based rough surface.  If the aspects of the pyramids had a 

more random distribution, the resulting data would have more closely followed 

observations from physical rough surfaces. 
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2. Rectangular Reflection Patterns  

In the physically based world, directional light that strikes a uniformly rough 

surface, like those found in nature reflects in the shape of a circular lobe.  Figure 18 

shows the circular shape of the backward reflection of light off of grass.  

 

 

 

 

 

 

 

 

Figure 18:  Halo Effect As Seen From An Airplane On A Grassy Field 

 

The circular shape of the reflecting lobe is the result of the fall off created by the 

random distribution of surface normals characteristic of rough surfaces.  This same 

circular pattern is captured in the OpenGL specular component by using a cosine 

function.  The reflections produced by rough surfaces in the simulator do not have the 

same circular patterns found in the physically based world.  This is due to the simulation 

tool’s use of pyramids to model rough surfaces.  The resulting reflections produced by 

the simulation tool takes on a rectangular shape, which significantly deviates from 

physically based rough surfaces when the viewpoint azimuth begins to shift either to the 

left or right of the light source.  Figure 19 attempts to show this phase shift through a set 

of graphs.  Below are artificial top-down contour plots, created to help show this phase 

shift from a different view aspect.  It is the phase shift of the peak reflection lobe which 

significantly degrades the quality of the simulator’s data, as the viewpoint changes 

azimuth away from the incidence. 
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Figure 19:  Charts Illustrating Phase Shift in Simulation Tool 

 

D. VALIDITY OF THE SIMULATION TOOL 

While significant limitations do exist in the simulator, it does provide a 

framework for improved rough surface representation.  It shows that careful 

consideration is needed when modeling the rough surface as shown in the limitations 
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inherent in using pyramids.  However, it is also the case where the pyramid’s limitations 

are minimized, that the expected behavior can be seen.  Should the pyramid be replaced 

with a more suitable object or method, more accurate measurements might be possible. 
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V. DATA ANALYSIS 
 

The emphasis of this thesis is the design and development of the rough surface 

simulator.  With the simulator, various types of rough surfaces can be modeled and 

analyzed to examine their reflective behaviors.  Several sets of data were collected from 

the simulator for analysis.  The input parameters for these runs where configured to 

minimize the error induced by the simulator’s limitations. 

 

A. GOALS OF ANALYSIS 

This analysis intended to develop a correction for OpenGL’s light equation to 

approximate rough surface reflections.  Due to the simulator’s limitations, the confidence 

of the data allowed for only a limited analysis.  The analysis did begin to identify 

reflection behaviors of the surface’s specular and diffuse components.   More 

importantly, the analysis helped identify many of the problems and limitations found in 

the simulator, which will improve its usefulness for future work.   

 

B. SELECTING SIMULATION RESULTS 

The simulator was set up to produced data varying two of its five input 

parameters: 

• Pyramid Truncation- 0.0 to 1.0 in 0.1 increments 

• Pyramid Aspect- 0.0 to 1.0 in 0.1 increments 

 

Due to the limitation surrounding the characteristics of a pyramid, the incidence was held 

constant.  Even though all incidence angles were examined to some extent, only one  

incidence angle allows the correct behavior to be seen.  A model approximating the 

opposition effect should reflect the most light at 0o phase-angle.  Since the majority of the 

simulator’s runs set up the pyramids for a 1.0 aspect, the surface normal of the facet with 
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the brightest reflection is 30o back in the direction of the light source.  Therefore, the 

incidence angle that best produces the opposition effect behavior is also 30o. 

The simulator took measurements of the reflecting surface every degree of 

viewpoint elevation and every 5 degrees of viewpoint azimuth.  Due to the deterministic 

nature of the simulator’s measurements, duplicate runs for statistical analysis were not 

required.  Examination of each surface produced roughly 6,500 points of data allowing 

for good data resolution. 

   

C. USE OF DATA REGRESSION TO DEVELOPMENT MODEL 

The data produced by the rough surface simulator was analyzed through a 

technique called data regression.  Data regression is the process of examining the error 

between a data set and a purposed model.  Through finding specific behaviors in the 

error, improvements to the overall model can be made.  The process of regressing data is 

by no means automated and often requires human intuition and interaction.  The result is 

a model or group of models that fit a data set to within an allowable margin error as set 

by the analyst.  Regression With Graphics by Lawrence Hamilton is an excellent 

reference for further reading on data regression. 

MathSoft’s S-Plus data regression software package was used for the model 

development in this thesis.  The details of the data regression will not be included, 

however, the values used to compare the fit of models to the data set, are included in 

Tables 1 & 2.  S-plus’ General Linear Model which uses a Iterated Re-weighted Least 

Squares regression function was used to estimate the errors of each model.  The specific 

errors of the linear model examined are the intercept (b0), the slope (b1), and the 

Residual Sum of Squares (RSS).  A model that properly fits the data set would have a b0 

value near zero, and a b1 value near one.  Models with smaller RSS values are thought to 

be a better fit.  These values were satisfactory metrics for comparing the various models 

in this thesis. 

It is important to point out that when data sets are typically regressed, models are 

developed against the idea of an ultimate truth; that is somewhere out there, unbeknownst 
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to the analysis, a perfect model exists.  In search of that truth, the analyst must develop 

models against the imperfect data points representing the truth.  This thesis approached 

the process of data regression differently, in that the data itself is assumed to be the truth, 

and that models are developed to fit the data perfectly.  The assumption that the data is 

the truth is willingly made knowing that the limitations inherent in the simulator corrupts 

the output enough to misrepresent the real behaviors to some level or degree.  This 

assumption is acceptable knowing that the desired validity of the resulting model is only 

for an initial behavioral examination, and not one that completely defines the real truth.  

Furthermore, it is possible to pull some beneficial information about how rough surfaces 

really reflect light from a regression conducted in this manner.    

  

D. DIVIDING THE LIGHTING MODEL 

Chapter II illustrated the relationship between the OpenGL lighting equation and 

the Opposition Effect.  It is the assumption of this thesis that manipulating the diffuse and 

specular terms in the OpenGL equation can approximate the opposition effect.  

Furthermore, we assume that the manipulation can be described as one or more 

mathematical functions.  Therefore, the analysis will attempt to individually extract the 

behaviors of the diffuse and specular components.  These individual components should 

still behave correctly when combined together, since under OpenGL the diffuse and 

specular components are combined using simple addition.   

A special set of runs was required in order to separate the light intensity reflected 

by diffuse and specular components.  While this did not adversely affect the behavior of 

both reflections, it did remove all effects of inner shadows from the specular reflections.  

The effects of the inner shadows were then examined in the diffuse reflection data.  It 

was not possible through the simulator to maintain the effects of the inner shadows on the 

specular component while separating the diffuse component.   
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E. THE SPECULAR COMPONENT 

The simplest rough surface is a smooth surface.  In this case, specular reflection 

will result in a forward reflecting lobe.  This means that the lobe will continue to travel 

away from the light source.   Figure 20 is the specular reflection on a smooth surface for 

incidence angles varying from 0 to 90 degrees.  The intensity level in this figure is 127.  

Since the intensity of all the reflections remained at 127, the intensity of the reflected 

light is dependent on the light source and not on the incidence angle.  It is important to 

note that the measured intensity of reflected light from a surface is an average of many 

pixels taken from the center of the surface.  Secondly, because light is broken into its 

three-color components in OpenGL, and since the surface is has only black, gray or white 

colors, the terms light and color can be used interchangeably. 

    

 
Figure 20:  Specular Reflection On A Smooth Surface 
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The forward specular reflection decreases as the roughness increases while 

modifying either the pyramid’s truncation value or the height-to-width aspect ratio.  

These modifications have different effects on how the specular reflection changes. 

 

1. Effects of Truncation on Specular Reflections  

A rough surface constructed of truncated pyramids results in two specular 

reflections; one forward and one back.  When the surface is nearly smooth, the majority 

of the light is reflected forward.  As the truncation value increases, and the cavities 

between pyramid tops grow larger, a backwards reflection lobe also appears.  Graphing 

the reflected light as truncation increases from 0% to 100% shows an inverse relation 

between the intensities of the forwards and backwards reflected light.  Figure 21 

illustrates this relationship. 

 

 
Figure 21:   Specular Reflection Varying Truncation Value 
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The light reflected back towards the light source, illustrated by the left portion of 

the graph in Figure 21, is centered at 30o elevation, which is also the zero phase angle 

since the incidence angle is 30o.  The forward specular reflection is also correctly 

centered at 150o elevation.  Some quick math shows that 150o elevation is also 120o phase 

angle, which is also twice the angular distance between the incidence angle and the 

surface normal.  Figure 22 illustrates the behaviors displayed in Figure 21 into a more 

logical form. 

 

 
Figure 22:   Elements of the Reflection Graph 

 

a) Developing a Model for the Forward Specular Reflection 

Even though the forward and back reflections have very similar 

characteristics, it is helpful to analyze the forward reflection first. Since the forward 

reflection already exists on smooth surface, starting with the original specular model was 

a logical step.  It is clear from the behavior of the forward reflection lobe in Figure 21that 

the angular width of the lobe does not change when varying truncation values; only the 
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reflected intensity changes.  Therefore, a model attempting incorporate this behavior 

should focus only on changing the intensity of the reflection only.  

At first glance, it looked as if the function for calculating the surface area 

of the top of the pyramid as a function of truncation level would serve as a good model 

for varying reflected intensity.  For brevity, this function will be called the square area 

function from the fact that it calculates the area of the pyramid’s top facet, which is a 

square, based on the level of truncation.  This function is stated below: 

Ireflected =  µsource * {2 * [(1 – t) / tan(θ)]}2 

Where:  

• t is the truncation value 

• θ is the angle of the pyramid faces 

 

If the light reflected by the pyramid’s top was the only source of reflected light, this 

equation would work.  However, there is a small amount of light which is reflected from 

the sides of the pyramid, thus increasing the overall intensity.  A simple model, 

developed through data regression, captures the light intensity add from the sides of the 

pyramid.   

  Ireflected =  µsource – [µsource * sin(t * π/2)] 

Figure 23 compares the data collected from the simulator to both the square area function 

and the regression model.  In this comparison, roughness is attributed to varying the 

truncation level. 
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Figure 23:   Comparison Of Forward Reflection Models To Simulation Data 

 

Both models are good approximations of the behavior of the forward 

reflecting lobe.  While not being a perfect fit, the regressed model is a better fit.  Table 1 

shows the errors of the models to the collected data. 

 

 
Table 1: Comparison Of Statistical Results For Forwards Reflection 

 

 Mean Abs Error Standard Deviation b0 b1 RSS 

Square Area Function 4.10 3.08 -4.684 1.012 122.407 

Regressed Model 2.35 1.88 -2.268 1.032 51.918 
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b) Adapting the model for to Backwards Specular Reflection 

Having found a model that reasonably captures the behaviors of forward 

reflection light on a rough surface created with truncated pyramids, the model should be 

extended to handle back reflections.  Referring back to Figure 21, the correlation between 

the forward and back reflection lobes is evident.  This figure shows that as truncation 

level increases, the back reflection intensity increases as well, which is inverse to the 

behavior of the forward’s reflection.  It is also evident from the data that the angular 

width of the back reflection lobe is the same as the forward lobe.  It seems plausible to 

use a model similar to the forward lobe.  However, the model would have to take into 

account the decreasing intensity levels seen in the back reflection data. 

The decrease in reflection intensity is due to the mathematical nature of 

the reflecting surface.  In the forward reflection, light reflects off the tops of the 

pyramids, which have a square shape.  Light reflected off the front face of a pyramid 

reflects from generally a triangular shape.  The areas of both a triangle and square are 

driven by the truncation value.  A graph showing the change in area of each shape as the 

truncation level changes is shown in Figure 24.   
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Figure 24:   Effects of Truncation Level On Surface Reflection Areas 

 

This graph illustrates the two elements behind the change in intensity as truncation levels 

change.  First, when truncation level is 0.0 the majority of light reflected is from the 

square reflector (the top facet of the pyramid) and, that as the truncation level increase to 

1.0, the triangle shape of the front facet dominates.  Second, the ratio of area of the 

square at 0.0 truncation to the triangle at 1.0 truncation is the same as the ratio of the 

forward lobe at 0.0 truncation and the back lobe at 1.0 truncation.   

Figure 25 shows that the behavior of the backward reflection is similar to 

that of the forward reflection.    The mathematical function formula determining the area 

of a triangle is: 

Ireflected =  µsource * {a – [a * (1 – t)2]} 

Where:  

• t is the truncation value 
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• a is the surface area of a pyramid facet  

= height/[2 * sin(tan-1(height/width))] 

 

As with the function for finding the area of the top pyramid facet based on truncation 

level, this function will be called the triangle area function.  The data measured was 

tested against a model similar to the one developed for the forward lobe, which is: 

Ireflected =  µsource * sin(t * π/2) / 2 

Figure 25 and Table 2 shows the improved fit of the regressed model over the triangle 

area function.   

 
Figure 25: Comparison Of Backward Reflection Models To Simulation Data 

 

 
Table 2: Comparison Of Statistical Results For Backwards Reflection 

 Mean Abs Error Standard Deviation b0 b1 RSS 

Triangle Area Function 4.96 2.30 1.760 1.077 21.883 

Regressed Model 1.71 2.40 -0.92 0.980 8.858 
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The regression model has a closer fit to the data taken from the simulator 

than the straight mathematical function for determining the area of the triangular 

reflection based on truncation level.         

 

2. Effects of Height-to-Width Aspect Ratio on Specular Reflections  

Another method for varying surface roughness is varying the height-to-width ratio 

of the pyramid.  A pyramid with a 0.0 aspect ratio will be completely flat, where a 

pyramid with an aspect ratio of 1.0 produces extremely rough surface.  Changing the 

aspect ratio of the pyramid has a profoundly different effect on the behaviors of the two 

reflections.  Where truncation level affected reflection intensity only and did not change 

the angular centers of those reflections, changing the aspect ratio affects both the 

intensity and the angular center of that intensity.  This is reasonable, since changing the 

aspect ratio changes the surface normal of the primary reflection facet.  As previous 

stated the effects of varying aspect ratio were not examined in depth.  Figure 26 shows 

the shifting of the angular center as well as the change in intensity of the specular 

reflection as the aspect ratio increases.  
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Figure 26: Specular Reflection Varying Aspect Ratio 

 

The second lobe seen in Figure 26 when the truncation level is at 0.2 is actually 

the specular reflection off the backside of the pyramid.  This reflection is seen only at 

very low aspect levels.  This effect, if viewed at much smaller intervals of aspect ratio, 

would show that the forward specular reflection on a smooth surface actually divides into 

the two separate lobes.  This division rapidly decrease in reflected intensity since the 

reflection break up into four smaller surfaces, each of which are reflecting light into a 

different direction.  No further examination into this effect was conducted. 

 

F. THE DIFFUSE COMPONENT 

The diffuse component is far simpler than its specular counterpart: one need know 

only the incidence angle to determine the percentage of light reflected.  In smooth 

surfaces, viewpoint is irrelevant, but on rough surfaces viewpoint is necessary for 

determining the intensity of the reflection.  Despite its simplicity, we will see that the 
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lack of shadow calculations in OpenGL will cause major errors in diffuse component 

reflection intensities.   

 

1. The Effects of Truncation Level on Diffuse Reflections  

The graph of the diffuse component on a smooth surface is rather uninteresting.  

Figure 27 shows the independent relationship of viewpoint and reflection intensity. 

 

 
Figure 27: Reflection Intensity Of Diffuse Component On A Smooth Surface 

 

Figure 28 shows how the intensity of the diffuse reflection changes as the surface 

becomes rougher by increasing the truncation level.  A rough surface with a truncation 

level of 0% is identical to a smooth surface.  The effects of truncation level on the diffuse 

reflection are more complex than with the specular component.  As mentioned before, the 

value of the diffuse component remains constant for all viewpoints for a specific 
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incidence angle when the surface is smooth.  When the surface becomes rough, this no 

longer holds true; the intensity of the diffuse reflection is now viewpoint-dependent.   

 

 
Figure 28:  Diffuse Reflection Intensity Varying Truncation Level 

 

The non-continuous behavior of the graph in Figure 28 suggests that the model 

describing rough surface diffuse reflection takes the form of three-part model.  Even 

thought specific formulas were not derived to describe this complex behavior, it was 

possible to pull out the individual behaviors in each part of the model.  Since all facets of 

the pyramid produce diffuse reflections, their specific intensities are constant throughout 

the range of viewpoint elevations.  The overall intensity is derived from the portions of 

each facet that are viewable are each viewpoint.  So in essence, the function describes 

how the view of the pyramid changes. 

The model can be broken into three parts, which are described below.  The 

domain of the model is described in terms of viewpoint elevation. 
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1. 0o to incidence angle (zero phase angle)  

2. Incidence angle to the angle at which the front face is no longer visible 

3. From that angle to 180o 

 

Due to the nature of the pyramids used in the simulation tool and the desirability of a 30o 

angle of incidence for the specular reflection, the domain is specifically broken down into 

0o  – 30o, 31o – 120o, and 121o – 180o. 

The reflected intensities of all three parts are essentially driven by the amount 

pyramid’s facet occupies a given view.  For the first and third parts, the view is primarily 

occupied by the front and back facet respectively, and the top facet if the pyramid is 

truncated.  Since the light reflected is diffuse, changing viewpoint with in this part does 

not change the reflected intensity of each facet, therefore, the overall reflected intensity 

remains constant.  The second part incorporates the same facet comparison as the first 

and third parts, but the reflected intensity decreases from the inner shadows that are only 

visible in the second part.  The effects of the inner shadows take on an exponential decay 

of the difference between the intensity levels of the first and third parts.  This exponential 

decay could then be added to the intensity of the third part to produce an overall reflected 

intensity for the second part.  It is unlikely that a continuous function exists that describes 

the all of behaviors of varying truncation level on the diffuse component. 

 

2. Effects of Height-to-width Aspect Ratio on Diffuse Reflections  

Changing the height-to-width aspect ratio has effects very similar to those from 

varying truncation level.  It is expected that a similar model could be applied to the 

effects of varying aspect ratio as that applied to varying truncation level.  Figure 29 

shows behavior similar to that seen in Figure 28.  The correlation between these effects 

was not examined further. 
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Figure 29: Diffuse Reflections Varying Height-to-width Aspect Ratio 

 

 

G. COMBINING THE EFFECTS 

This thesis did not examine the effects on the specular and diffuse reflections, as 

truncation level and height-to-width aspect ratio were varied simultaneously.  This was 

considered beyond the scope of this thesis. 

 

H. SUMMARY 

It is evident that reflective behavior of surfaces change significantly when the 

surface is represented by more than one polygon and become more complex.  The 

behaviors of both diffuse and specular reflections show considerable change when 

roughness is added through an increase of either truncation level or aspect ratio.  This 

alone indicates the need for correcting OpenGL’s lighting equation for rendering implicit 

rough surface behavior.  
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VI. CONCLUSIONS 
 

The addition of rough surfaces to computer graphics is not a simple task.  Rough 

surfaces have an infinite range of possibilities, even without considering those provided 

by nature.  However, advancing computer graphics through the implementation of rough 

surface reflections still has its merit.  Many in the computer graphics business attempt to 

implement rough surfaces through increasing the number of polygons rendered every 

second.  They seek to create realism through explicitly giving objects texture with 

millions of polygons.  Another method, with an aim similar to this one, seeks to attach 

the same realism through an implicit texturing rather than an explicit polyhedron.  In 

essence, this seeks to change the math behind the lighting calculations to achieve the 

same result achieved by adding millions of polygons.  Neither approach is necessarily 

better or worse than the other; however the implicit method is achievable on today’s 

hardware, and the latter must wait. 

This thesis suggests that adding an semi-empirical correction to the models used 

computer graphics is a viable method for significantly improving their over all realism, 

and provides a simulation tool to quantify rough surface behaviors.  The behavior of 

rough surfaces has been compared to an astronomical phenomenon known as the 

opposition effect, in attempt to qualify the behavior of a rough surface and begin to 

understand how to model that behavior.  Graphics libraries can already approximate the 

opposition effect explicitly.  These same graphics libraries would benefit great if they 

could render the same behavior implicitly.  

A computer graphics program using the OpenGL library was created to examine 

the behaviors of light reflection off rough surfaces.  In the design and development of this 

program it became very clear that the task of creating an explicitly generated rough 

surface that match the reflection behaviors of real textured surfaces is not simple.  The 

most basic element in the simulator also became the biggest limitation: 

1. Rough surfaces, as the human eye sees it, are continuous.  Even the 
microscopic details of the surface have perfect color and shape.  Computer 
graphics on the other hand is not capable of rendering continuous forms.  
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Its discrete nature will only ever be able to approximate that which is 
continuous.  Due to the complexity of rough surface reflections, that 
approximation carries over into undesirable artifacts that dilute the real 
behaviors.  Thus making modeling such behaviors more difficult. 

2. Rough surfaces can be thought of as surfaces composed of randomly 
placed facets, which have, when taken as a whole, have a uniform 
appearance.    Any attempt to simulate rough surfaces must incorporate 
this random nature.   

3. Discrete geometric forms are not the best building blocks for constructing 
a rough surface.  Even if these forms are reduced in size small enough to 
become microscopic, their geometry will still carry though and dominate, 
thus inducing further error into the data. 

 

A simulation, if able to overcome these stumbling points, would be a power tool 

for examining the reflection behavior of simulated rough surfaces.  Unfortunately, this is 

only the start for developing a model.  Because the algorithms used to draw the effects of 

lighting in computer graphics are mathematically based, so must the model be. 

With data provided by the simulator, specific behaviors were examined.  These 

behaviors were characterized into the two types of reflected light: diffuse and specular.  

Each component is a function of the incidence angle, viewpoint, and the two methods in 

the simulation program for varying the rough surface: height-to-width aspect ratio and 

truncation level.  Despite the problems inherent in the data, which resulted from 

limitations in the simulation program, specific behaviors were extracted and models 

developed for the simplest behavior. 

1. It is possible for two separate specular reflections to occur, depending on 
pyramid truncation level. 

a. For the forward reflection:   

i. The angular center of its reflection will always be twice the 
angular difference between the incidence and surface 
normal. 

ii. The reflection intensity can be modeled by a decreasing 
sine function of truncation level and source intensity. 

b. For the backwards reflection: 

i. The angular center of its reflection is driven by pyramid’s 
height-to-width aspect ratio.   
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ii. The reflection intensity can be modeled by the source 
intensity and either an increasing sine function of the 
truncation level decreasing cosine function of the aspect 
ratio.  

2. The diffuse reflection was found to have a three part model.  This model 
worked for rough surfaces varying either truncation level or height-to-
width aspect ratio.  No explicit mathematical function was found; 
however, a simple behavioral model was developed with the following 
attributes: 

a. The first and third steps acted like the original Gouraud shading 
function driven by the primary viewable facet. 

b. The second step exhibited an exponential decay of the difference 
between the intensities of the first and third parts. 

3. Combining the effects of varying truncation levels and aspect levels was 
not examined. 

 

While no final model exhibiting the characteristics of rough surface reflections 

was created, important behavioral patterns were identified.  Correcting the limitations of 

the simulation and re-examining the data thus produced, should lead to better-defined 

behaviors, and more refined models. 

Despite the advancement of computer hardware and non-real time graphics 

rendering, this approach may be the only real method for making realistic three-

dimensional graphics work in a real time interactive environment. 

Finally, one rule is always paramount in computer graphics, which is also the 

driving force behind this thesis: 

IF IT LOOKS GOOD, IT IS GOOD. 
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APPENDIX A: GLOSSARY OF TERMS 
 

Ambient – Ambient light is non-directional and distributed uniformly throughout space.  

Ambient light falling upon a surface approaches from all directions.  The light is reflected 

from the object independent of surface location and orientation with equal intensity in all 

directions. (Woo, p685) 

Antialiasing – A rendering technique that assigns to pixels the color of the primitive 

being rendered, regardless of whether that primitive covers all or only a portion of the 

pixel’s area.  This results in jagged edges. (Woo p.686) 

Culling – The process of eliminating polygons from being rendered either from hidden 

surface removal or level of detail management. (Woo, p.690) 

Diffuse - Diffuse lighting and reflection accounts for the direction of a light source.  The 

intensity of light striking a surface varies with the angle between the orientation of the 

object and the direction of the source.  A diffuse material scatters that light evenly in all 

directions.  (Woo, p.691) 

Incidence Angle – The angle that a line (as a ray of light) falling on a surface or interface 

makes with the normal drawn at the point of incidence. (Webster) 

Lambertian – see diffuse. 

Opposition Effect – In a medium in which the particles are large when compared 

with the wavelength, particles near the surface case shadows on the deeper grains.  

These shadows are visible at large phase angles, but close to zero phase-angle, 

they are hidden by the object that cast them.  Thus, the effect may only be thought 

of as being caused by shadow hiding.  (Hapke, p.217) 

Phase Angle – The angular difference between the incidence and viewpoint angles.  In 

vector form, the phase angle can be calculated by: θ = cos–1 {(v . w)/([v][w])}  

Specular - Specular lighting and reflection incorporates reflections off shiny objects and 

the position of the viewer.  Maximum specular reflectance occurs when the angle 

between the viewer and the direction of the reflected light is zero.  A specular material 
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scatters light with greatest intensity in the direction of the reflection, and it is brightness 

decays, based upon the exponential value shininess. (Woo, p.702) 
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APPENDIX B: OPERATION MANUAL FOR ROUGH SURFACE 
SIMULATOR 

 

Program Requirements 

• Java Runtime Environment (rev 1.3.0 or newer) 

• Java3D w/ OpenGL Library (rev 1.2.0 or newer) 

• Rough_Surface_Simulator.jar 

 

System Requirement 

• At least 800 MHz processor, 1GHz recommended 

• At least 512 Mbytes Ram, 1 Gbytes recommended 

• nVidia GeForce  w/ 32 Mbytes VRam (or equivalent) 

  

Installation and Setup Directions  

1. Install Java Runtime Environment (JRE) 

2. Install Java3D – installer should automatically install graphics library into JRE 

directory structure. 

3. Create a “c:\RSSimulator” directory 

4. Put “rssimulator.jar”,  & “Graphics User Interface.bat” & “Batch file.bat” into 

c:\RSSimulator 

5. Create a “c:\RSSimulator\data” directory 

6. Create a “c:\RSSimulator\images” directory 

7. Shutdown and Reboot Computer 

 

 

 



 68

Running the Rough Surface Simulator from the Command Line 

The rough surface simulator allows a command line option for program execution 

to allow for batch file operation.  There are some additional Java command-line options 

that are required in order to properly set up the JRE, these options must be included.  All 

program options must also have a value.  The following is a list of options: 

• Pyramid Height-to-width Aspect Ratio (recommended 0.0 or greater) 

• Pyramid Base Size (recommend 0.5 or less) 

• Pyramid Truncation Height Level (recommend 0.0 to 1.0) 

• Incidence Angle (0 to 90 degrees) 

• Image Capture switch (“Image” or “NoImage”) 

• Run Once Switch (“Once” or “NotOnce”) 

• Elevation Rotation Increment (1 to 180 degrees) 

• Azimuth Rotation Increment (1 to 180 degrees) 

Examples: 

java –mx512m –cp rssimulator.jar rssimulator.GUI 1.0 1.0 0.5 30 Image Once 1 5 

This command line would run the program with 512 Mbyte memory model, use 

classes stored in the rssimulator.jar file, an aspect ratio 1.0, a truncation level of 100%, a 

pyramid base of 0.5, incidence angle of 30 degrees and the program would capture each 

image rendered and save it as a file in the image directory. 

 

Running the Rough Surface Simulator from a Batch File 

 The program maybe run as part of a batch file to automate a large data run.  In the 

“c:\RSSimulator” directory, “Batch File.bat” is an example batch file.  All parameters 

must be appropriately filled as in the Command-Line execution.  Any number of runs can 

be added to the batch file.  It recommended that all runs in a batch file, have the 
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“NoImage” switch, as the images from a single run can take up several Mbytes of hard 

drive space. 

 

Running Rough Surface Simulator as a GUI Application 

Running the Rough Surface Simulator is the preferred method, but allows for only 

one run at time.  Executing the “Graphics User Interface.bat” file (which is located in 

“c:\RSSimulator” directory) will start the opening menu, which will ask the user to set 

the parameters for aspect ratio, truncation level and incidence angle of the rough surface.  

The following picture shows the layout of the opening menu. 

 
 
 

Currently, this rough surface is set for an aspect ratio of 1.0, truncation level of 

50%, an object size of 0.5 and an incidence angle of 45 degrees, the option to capture 

images of the rough surface is turned off and the elevation and azimuth rotations will 

increment by 1 and 5 respectively.  If either rotation increment is modified, the user will 
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need to click the “Update” button to ensure changes are registered in the program.  After 

setting the desired parameters, the rough surface can be generated by clicking on 1 of 2 

“Create Model” buttons.  The Pyramid Model button will disregard any truncation level 

value set and render a scene of full pyramids.  The Truncated Pyramid Model will 

generate a surface with the set truncation level.  This window will be replaced with the 

simulator window. 

 
 

 
 
 

From here, clicking on the Start button begins execution of the simulator.  If for 

some reason it is desirable to stop the application the click the Stop button.  It is 
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important note, that once the application is stopped, it cannot be restarted.  This window 

must then be closed by clicking on the Quit button.  All data stored up to this point will 

be saved in an appropriately titled file and stored in the data directory.  The program will 

close all windows on its own. 

 

Converting Simulation Results into an Excel Spread Sheet 

 After a run has been completed, the data will be stored in the 

“c:\rssimulation\data” directory.  An example file for a simulation run with a height-to-

width aspect ratio of 1.0, a truncation level 50% and a incidence angle of 45 degrees 

would be named “example_data_from_A1.0_T0.5_L45.0.txt”.  The contents of the file 

would look something like: 

 

AzGamma ElGamma Roughness Incidence Control Rough Final Azimuth Elevation 

0.0     -45.0   0.5       45.0      0.0     27.81 27.81 0.0     0.0   

0.0     -44.0   0.5       45.0      0.0     27.81 27.81 0.0     1.0   

0.0     -43.0   0.5       45.0      63.0    80.22 80.22 0.0     2.0   

0.0     -42.0   0.5       45.0      76.5    56.69 56.69 0.0     3.0   

 

 To convert this file into a working Microsoft Excel work sheet, follow the step-

by-step procedure: 

1. Open Microsoft Excel 

2. Under Files, select the Open function 

3. Navigate to the “c:\rssimulator\data” directory and select the desired data file 

4. Change the file type to be opened to All Files *.* 

5. Click on the Open button (see the illustration on the next page for help) 
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6. For Original Data Type, select Delimited, and click on Next 
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7. Now, add Spaces to the range of Delimiters, then click on Finish 

 

8. Your now have the data represented in a working Excel spreadsheet 

 

Creating a Standard Chart of the data 

 To recreate charts as seen in Chapter V, complete the following steps: 

1. Select the Chart Wizard, which is the button with the blue, yellow and red bar 

graph  on it 
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2. Select the Line Graph option 

 

 

3. Select the Series tab on the next window 

4. Remove all undesired columns from the series window 

5. Add the Elevation column to the Category(X)axis labels: 
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6. Click the Finish button, and you are done 
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7. Of course axis and charts labels need to be added, this can be accomplished 

through clicking on the graph with the mouse, clicking the right mouse button, 

selecting Edit Chart Object and then Chart Options  

8. The rest should be self-explanatory 
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